Name:

Grade: 8
Physics worksheet

Question one

Mechanical Energy

The Olympic downhill ski run has a maximum height $\mathrm{h}=\mathbf{2 0 0} \mathrm{m}$.
A skier of mass $m=70 \mathrm{Kg}$ goes down this ski run.

Let $\mathrm{g}=10 \mathrm{~N} / \mathrm{Kg}$
Part A: At the top (point A)
1)Calculate the gravitational potential energy of the skier at the

top A of the run
2)The skier starts off without initial speed. Its kinetic energy at point A is zero. Why
3)Calculate the mechanical energy at point A.

Part B: The skier arrives at B with a speed $40 \mathrm{~m} / \mathrm{s}$.
4)Calculate the kinetic energy of the skier at point B.
5)Calculate the gravitational potential energy of the skier at point B.
6)Deduce the mechanical energy.

Question two: \quad Power supplied by a crane

A crane takes 18 s to lift a load of mass $m=200 \mathrm{Kg}$, a length $\mathrm{l}=20 \mathrm{~m}$. the upward motion of the load is uniform rectilinear.
1)Calculate the magnitude of the weight of the load. Let $\mathrm{g}=10 \mathrm{~N} / \mathrm{Kg}$.
2)Calculate the work done by the crane's engine, given that the engine exerts a force of a magnitude equal to that of a weight.
3)Calculate the power supplied by the crane.

